WIWAM植物表型成像分析系統(tǒng)由位于著名Ghent大學(xué)的VIB研究所、世界著名的自動(dòng)化工程公司SMO聯(lián)合歐洲著名科學(xué)家合作研制生產(chǎn)的新型植物表型組學(xué)研究平臺(tái),可以全自動(dòng)、高通量、高容量測量分析擬南芥、水稻、玉米、大豆等各種植物的三維表型形狀及生理狀態(tài)及其與環(huán)境條件關(guān)系。
WIWAM植物表型成像分析系統(tǒng)整合了LED植物智能培養(yǎng)、自動(dòng)化控制系統(tǒng)、熒光成像測量分析(包括葉綠素、紅熒光)、植物紅外熱成像分析、植物近紅外成像分析、植物多光譜分析、植物高光譜分析、自動(dòng)條碼識(shí)別管理、RGB真彩3D成像、激光3D多光譜成像、計(jì)算機(jī)斷層掃描技術(shù)、自動(dòng)稱重與澆灌系統(tǒng)等多項(xiàng)先進(jìn)技術(shù),以最優(yōu)化的方式實(shí)現(xiàn)大量植物樣品——從擬南芥、水稻、玉米到各種其它植物的全方位生理生態(tài)與形態(tài)結(jié)構(gòu)成像分析,用于高通量植物表型成像分析測量、植物脅迫響應(yīng)成像分析測量、植物生長分析測量、生態(tài)毒理學(xué)研究、性狀識(shí)別及植物生理生態(tài)分析研究等。
WIWAM Conveyor
WIWAM XY
WIWAM Line
作為全球第一家將大規(guī)模自動(dòng)化理念和工業(yè)級(jí)零件和設(shè)備整合入植物成像系統(tǒng)的廠家,SMO公司在植物表型成像分析領(lǐng)域處于全球領(lǐng)先的技術(shù)前列,大面積葉綠素?zé)晒獬上裣到y(tǒng)使WIWAM成為植物表型分析與功能成像領(lǐng)域最為先進(jìn)的儀器設(shè)備,植物生長、脅迫響應(yīng)等測量參數(shù)達(dá)幾百個(gè)。先進(jìn)耐用的工業(yè)級(jí)部件使系統(tǒng)非常耐用,基本免維護(hù),與同類產(chǎn)品相比,特點(diǎn)突出。目前WIWAM植物表型平臺(tái)分為WIWAM XY,WIWAM Line、WIWAM Conveyor、WIWAM Imaging Box以及WIWAM Field等多個(gè)系列。
Dirk Inzé, 比利時(shí)根特大學(xué)法蘭德斯生物技術(shù)研究所(VIB)植物系統(tǒng)生物學(xué)系主任,比利時(shí)弗拉芒皇家科學(xué)和藝術(shù)學(xué)院院士,歐洲分子生物學(xué)組織(EMBO)會(huì)員,生命科學(xué),環(huán)境科學(xué)和地球科學(xué)協(xié)會(huì)(LEGS)主席,歐洲科學(xué)委員會(huì)委員。所獲獎(jiǎng)項(xiàng)有:德國科爾博基金會(huì)The Körber Stiftung 獎(jiǎng)獲得者,比利時(shí)最高學(xué)術(shù)與科學(xué)獎(jiǎng)法朗基(The Francqui)獎(jiǎng)獲得者,比利時(shí)弗蘭德斯地區(qū)FWO -優(yōu)秀獎(jiǎng)(The Five-yearly FWO-Excellence)獲得者,全球農(nóng)業(yè)與生命科學(xué)高等教育協(xié)會(huì)聯(lián)盟(GCHERA)的世界農(nóng)業(yè)獎(jiǎng)。德克教授長期致力于破解控制植物器官生長、生物量和結(jié)籽率的分子機(jī)理研究,是全球第一個(gè)開展植物細(xì)胞周期調(diào)節(jié)通路研究的學(xué)者,帶領(lǐng)團(tuán)隊(duì)發(fā)現(xiàn)了植物細(xì)胞周期調(diào)控的核心元件,并證實(shí)了這些元件可用于提高植物生長和作物產(chǎn)量。作為WIWAM系統(tǒng)開發(fā)的首席科學(xué)家,他在全球率先使用高通量植物表型識(shí)別系統(tǒng)WIWAM鑒定出促進(jìn)農(nóng)作物產(chǎn)量性狀的關(guān)鍵基因,相關(guān)文章發(fā)表在Nature Biotechnology等頂級(jí)期刊上。根據(jù)湯森路透(Thomson Reuters)近期公布的數(shù)據(jù),作為植物和動(dòng)物科學(xué)領(lǐng)域的“世界高被引科學(xué)家”,Dirk Inzé的研究工作獲得70000次以上的引用,H-index超過150。
德克•英澤(Dirk Inzé)教授摘取2017年世界農(nóng)業(yè)獎(jiǎng)。德克教授長期致力于破解控制植物器官生長、生物量和結(jié)籽率的分子機(jī)理研究,是全球第一個(gè)開展植物細(xì)胞周期調(diào)節(jié)通路研究的學(xué)者,帶領(lǐng)團(tuán)隊(duì)發(fā)現(xiàn)了植物細(xì)胞周期調(diào)控的核心元件,并證實(shí)了這些元件可用于提高植物生長和作物產(chǎn)量。除了科研理念與成果的不斷創(chuàng)新,德克教授還致力于推動(dòng)成果的應(yīng)用轉(zhuǎn)化、助推相關(guān)產(chǎn)業(yè)的發(fā)展;同時(shí)DIRK INZE教授也是WIWAM首席科學(xué)家,主導(dǎo)了世界最先進(jìn)的WIWAM植物表型成像系統(tǒng)的開發(fā)。
下文為Ghent大學(xué)Stijn Dhondt,Nathalie Wuyts和 Dirk Inze教授聯(lián)合撰寫。
成像技術(shù)的進(jìn)步為植物表型研究提供了革新性的思路,目前是表型系統(tǒng)是性狀測量的一種主要工具。本文中我們就3個(gè)重要特征來對(duì)植物表型系統(tǒng)介紹:高通量、維度以及分辨率。首先全植株表型成像系統(tǒng)是目前研究熱點(diǎn),結(jié)合自動(dòng)化技術(shù)的進(jìn)展,可現(xiàn)狀增加通量。組織和細(xì)胞水平的表型研究以及所有工具,一般是以低通量運(yùn)行,常用于獲得就空間和時(shí)間分辨率而言得到提升的高維度表型數(shù)據(jù)。傳感器技術(shù)最新的進(jìn)展使對(duì)植物形態(tài)學(xué)和生理學(xué)相關(guān)性狀進(jìn)行研究成為可能?傊蚱涫侵参锉硇拖到y(tǒng)成像過程主要特征,焦點(diǎn)集中于時(shí)空分辨率。
植物表型是結(jié)合了多個(gè)系統(tǒng)和工具的復(fù)合系統(tǒng)。已有人建議將表型組學(xué)列入生物新學(xué)科,它涉及到在多個(gè)組織水準(zhǔn)收集高維度表型數(shù)據(jù);與全基因組測序一樣,研究進(jìn)展朝向?qū)σ粋(gè)基因組的全部表型進(jìn)行鑒別。當(dāng)然此終極目標(biāo)是理論目標(biāo),考量到維度以及通量和分辨率當(dāng)前和未來的進(jìn)展,植物表型和表型組學(xué)也許可從此獲益,我們通常對(duì)植物過程以及基因-表型關(guān)聯(lián)關(guān)系的理解還非常不全面(Box1)。植物表型從本質(zhì)而言非常復(fù)雜,因其是受多個(gè)環(huán)境因子影響的多個(gè)基因型互作的結(jié)果;プ饕环矫嬗绊懥搜邪l(fā)項(xiàng)目和以結(jié)構(gòu)性狀加以描述植物生長;另外,也影響了以生理性狀描述的植物功能。結(jié)構(gòu)和生理性狀一起最終決定了以生物量和產(chǎn)量體現(xiàn)的植株性能。不同組織水平或不同類別的表型性狀可能在一個(gè)特殊環(huán)境或多個(gè)環(huán)境中有巨大相關(guān)性(變差)。如果性狀較強(qiáng),可削減表型復(fù)雜性(例如,不同測量性狀),但是否需要如此則依賴于面對(duì)的生物學(xué)問題。
所調(diào)查的生物問題很多程度上決定了采用哪些感興趣的表型性狀,從而決定了使用何種表型系統(tǒng)和工具。從本質(zhì)上加以探討,表型系統(tǒng)本身的測量性狀有限,這關(guān)系到,植物表型系統(tǒng)究竟是什么。植物表型是在給定環(huán)境下與基因型相關(guān)的一套結(jié)構(gòu)、生理和性能相關(guān)性狀。植物表型研究室測定此類性狀的定量或定性值。假定表型組理論上包括一個(gè)給定基因型的所有可能基因型,植物表型組學(xué)可看作是研究多個(gè)基因的表型組學(xué)。除了提供進(jìn)行表型研究的工具,植物表型系統(tǒng)通常包括植物在特定環(huán)境條件下研究植物生長的方法,植物生長或已經(jīng)限定和控制或半控制或未控制和測量。植物表型系統(tǒng)的特征決定了其測定基因型數(shù)量以及環(huán)境條件范圍或處理,決定了表型組學(xué)研究科持續(xù)性。表型系統(tǒng)一般以高通量分辨率以及維度來定義說明。
Cell to whole-plant phenotyping: The best is yet to come
Trends in Plant Science
Stijn Dhondt1,2*, Nathalie Wuyts1,2*, and Dirk Inze´ 1,2
1 Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
2 Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
Imaging and image processing have revolutionized plant phenotyping and are now a major tool for phenotypic trait measurement. Here we review plant phenotyping systems by examining three important characteristics: throughput, dimensionality, and resolution. First, whole-plant phenotyping systems are highlighted to- gether with advances in automation that enable signifi- cant throughput increases. Organ and cellular level phenotyping and its tools, often operating at a lower throughput, are then discussed as a means to obtain high-dimensional phenotypic data at elevated spatial and temporal resolution. The significance of recent developments in sensor technologies that give access to plant morphology and physiology-related traits is shown. Overall, attention is focused on spatial and tem- poral resolution because these are crucial aspects of imaging procedures in plant phenotyping systems.
Plant phenotyping is a complex matter involving a plethora of systems and tools
‘Phenomics’ has been proposed as a novel discipline in biology and involves the gathering of high-dimensional phenotypic data at multiple levels of organization, to prog- ress towards the full characterization of the complete set of phenotypes of a genome, in analogy with whole genome sequencing [1]. This ultimate aim will of course remain hypothetical; however, current and future developments in plant phenotyping and phenomics may benefit from the consideration of dimensionality, together with throughput and resolution, because our comprehension of plant process- es in general, and the genotype–phenotype relationship in particular, is far from complete (Box 1). Plant phenotypes are inherently complex because they result from the inter- action of genotypes with a multitude of environmental factors. This interaction influences on the one hand the developmental program and growth of plants, which can be described by means of structural traits, and, on the other hand, plant functioning, described by means of physiological traits (Figure 1). Both the structural and physiological traits eventually determine plant performance in terms of bio- mass and yield. Phenotypic traits at different organizational levels or in different categories may show high correlations (dependent variation) in one particular or in multiple envir- onments. If robust, these may reduce the complexity of phenotyping (i.e., the number of different traits to be mea- sured), but whether this is wanted depends on the biological question [2].
The biological question under investigation largely determines the phenotypic traits of interest and conse- quently the phenotyping system and tools. It may be exploratory in nature, meaning that the number of traits is limited by the phenotyping system itself and to what isPlant phenotyping A plant phenotype is the set of structural, physiological, and performance-related traits of a genotype in a given environment. Plant phenotyping is the act of determining the quantitative or qualitative values of these traits. Given that a phenome consists in principle – of the set of all possible phenotypes of a given genotype, plant phenomics could be considered as the study of phenomes of multiple genotypes. Besides providing the tools to perform phenotyp- ing itself, plant phenotyping systems usually comprise the means to grow plants in certain environments, which are either defined and controlled, or semi-controlled, or uncontrolled and measured. The characteristics of the phenotyping system determine its capacity in terms of the number of genotypes and the range of environmental conditions or treatments and, thus, its suitability for phenomics. Phenotyping systems can be described by means of throughput,resolution, and dimensionality