去年8月份的一篇老文章,最近ADE又吵的火熱了,再發(fā)給大家看看。
抗體依賴的增強(qiáng)作用(Antibody- dependent enhancement,ADE) 是病毒感染后(疫苗接種類似),產(chǎn)生的抗體為非中和或弱中和作用,此類抗體促進(jìn)病毒進(jìn)入和感染宿主細(xì)胞,導(dǎo)致傳染性和毒力增強(qiáng)。
FcγR及其功能
FcγR分類及免疫細(xì)胞表達(dá)
其中FcγRIIb、胞內(nèi)段為ITIM(immunoreceptor tyrosine inhibitory motif,免疫受體酪氨酸抑制基序),F(xiàn)cγRIIIb不含胞內(nèi)段。其余FcγR均為ITAM(immunoreceptor tyrosine activating motif,免疫受體酪氨酸激活基序)。
B細(xì)胞只表達(dá)FcγRIIb(參與生發(fā)中心高親和力抗體產(chǎn)生),T細(xì)胞不表達(dá) FcγR。
FcγR信號(hào)通路
①FcγR被IgG免疫復(fù)合物交聯(lián)
②ITAM磷酸化,激酶SYKSRCPKC激活
③鈣離子內(nèi)流
④Actin重排,吞噬IgG免疫復(fù)合物
⑤轉(zhuǎn)錄激活
⑥細(xì)胞因子和趨化因子釋放
功能
脫顆粒
顆粒細(xì)胞(中性粒,堿性粒細(xì)胞,酸性粒細(xì)胞)在活化后,產(chǎn)生活性氧(reactive oxygen species,ROS)活性氮(reactive nitrogen species,RNS),產(chǎn)生細(xì)胞毒性,抗微生物感染。另外,鈣離子內(nèi)流,也會(huì)出發(fā)脫顆粒( 絲氨酸蛋白酶,白三烯,抗菌活性蛋白質(zhì),如溶菌酶和乳鐵蛋白,以及抗菌肽,如α防御素等)。
NK細(xì)胞也類似,激活后,釋放穿孔素和顆粒酶等,產(chǎn)生抗病毒活性。
吞噬及抗原遞呈
FcγR被交聯(lián)激活后,DC細(xì)胞,單核細(xì)胞,巨噬細(xì)胞誘導(dǎo)IgG調(diào)理素作用,吞噬病毒和感染的細(xì)胞(病毒在其中復(fù)制),稱之為抗體依賴的細(xì)胞胞吞作用(
antibody- dependent cellular phagocytosis. ADCP)。
ADE
一些研究顯示:體內(nèi)非中和抗體,可能會(huì)導(dǎo)致ADE。
登革熱ADE
ADE最早的報(bào)道來(lái)自于登革熱。在預(yù)先感染登革熱后,產(chǎn)生的非中和抗體,在再次感染登革熱時(shí),不但不能起到保護(hù)作用,而且會(huì)引起ADE,促進(jìn)病毒感染(文獻(xiàn)4)。
ADE其實(shí)也是借助了抗體介導(dǎo)的胞吞作用(ADCP),其中FcγRIIa和FcγRIIIa其促進(jìn)作用,F(xiàn)cγRIIb起抑制作用。
通過(guò)胞吞進(jìn)入細(xì)胞的病毒,在吞噬體低pH環(huán)境下,包膜蛋白結(jié)構(gòu)變化,促進(jìn)病毒融合和感染。通過(guò)這種方式,病毒可以進(jìn)入沒(méi)有病毒受體的細(xì)胞,如髓系細(xì)胞,上皮,內(nèi)皮細(xì)胞等。
ADE此后在HIV,埃博拉,流感等都有報(bào)道。
冠狀病毒ADE
在SARS-CoV,MERS-CoV都有ADE的報(bào)道,主要通過(guò)FcγRIIb介導(dǎo)?筍pike蛋白抗體,滅活疫苗,以及感染病人血清,在體外模型,及小鼠,非人靈長(zhǎng)類動(dòng)物都有ADE的報(bào)道,但是據(jù)此不能預(yù)測(cè)病人體內(nèi)的情況。
SARS-CoV-2
在SARS-CoV-2(COVID-19致病病毒)滅活疫苗和中和抗體,臨床前研究數(shù)據(jù)(來(lái)自于小鼠,大鼠,非人靈長(zhǎng)類等),顯示保護(hù)作用,沒(méi)有發(fā)現(xiàn)ADE(文獻(xiàn)12,13,14)。
但是人FcγR和模型動(dòng)物還是有很大區(qū)別的,因而臨床前數(shù)據(jù)不能完全預(yù)測(cè)人體情況。雖然人源化FcγR小鼠已經(jīng)開(kāi)始使用,但是其結(jié)果也不能完全模擬人體。
COVID-19病人血清治療,臨床研究未顯示增進(jìn)疾病,提示無(wú)ADE。這是SARS-CoV-2和SARS-CoV的區(qū)別(文獻(xiàn)16)。
未來(lái)抗體及疫苗研發(fā)提示
主要參考文獻(xiàn)
Halstead, S. B., Chow, J. & Marchette, N. J. Immunologic enhancement of dengue virus replication. Nat. New Biol. 243, 24–25 (1973).
Halstead, S. B., Shotwell, H. & Casals, J. Studies on the pathogenesis of dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection. J. Infect. Dis. 128, 15–22 (1973).
Stylianos Bournazos et al,The role of IgG Fc receptors in antibody-dependent enhancement,Nat Rev Immunol. 2020 Aug 11:1-11
Katzelnick, L. C. et al. Antibody- dependent enhancement of severe dengue disease in humans. Science 358, 929–932 (2017).
Thulin, N. K. et al. Maternal anti- dengue IgG fucosylation predicts susceptibility to dengue disease in infants. Cell Rep. 31, 107642 (2020).
Gotoff, R. et al. Primary influenza A virus infection induces cross- reactive antibodies that enhance uptake of virus into Fc receptor- bearing cells. J. Infect. Dis. 169, 200–203 (1994).
Laurence, J., Saunders, A., Early, E. & Salmon, J. E. Human immunodeficiency virus infection of monocytes: relationship to Fc- γ receptors and antibody- dependent viral enhancement. Immunology 70, 338–343 (1990).
Kuzmina, N. A. et al. Antibody- dependent enhancement of Ebola virus infection by human antibodies isolated from survivors. Cell Rep. 24, 1802–1815 (2018).
Wan, Y. et al. Molecular mechanism for antibody dependent enhancement of coronavirus entry. J. Virol. 94, e02015–e02019 (2020).
Kam, Y. W. et al. Antibodies against trimeric S glycoprotein protect hamsters against SARS- CoV challenge despite their capacity to mediate FcγRII- dependent entry into B cells in vitro. Vaccine 25, 729–740 (2007).
Wang, Q. et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non- human primates. ACS Infect. Dis. 2, 361–376 (2016).
Gao, Q. et al. Rapid development of an inactivated vaccine candidate for SARS- CoV-2. Science 369, 77–81 (2020).
Rogers, T. F. et al. Isolation of potent SARS- CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science https://doi.org/ 10.1126/science.abc7520 (2020).
Cleary, S. J. et al. Animal models of mechanisms of SARS- CoV-2 infection and COVID-19 pathology. Br. J. Pharmacol. https://doi.org/10.1111/bph.15143 (2020).
Smith, P., DiLillo, D. J., Bournazos, S., Li, F. & Ravetch, J. V. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl Acad. Sci. USA 109, 6181–6186 (2012).
Joyner, M. et al. Early safety indicators of COVID-19 convalescent plasma in 5,000 patients. J. Clin. Invest. https://doi.org/10.1101/2020.05.12.20099879 (2020).