科學(xué)家利用Plantarray生理表型研究系統(tǒng)發(fā)表植物空氣互作文章
來自以色列的科學(xué)家利用Plantarray高通量植物生理表型平臺(tái)和植物逆境生物學(xué)生理研究平臺(tái)發(fā)表了題為Wild Wheat Introgression Promotes Temporal Water fluxes Dynamics under Terminal Drought Stress through Plant-Atmospheric Interrelations的文章。博普特公司是該系統(tǒng)中國區(qū)合作伙伴,負(fù)責(zé)其系列產(chǎn)品在中國市場(chǎng)的推廣、銷售和售后服務(wù)。
植物所經(jīng)歷的水分脅迫強(qiáng)度取決于土壤水分狀況以及大氣變量,如溫度、輻射和空氣蒸汽壓差(VPD)。盡管對(duì)這些土壤和大氣因素在地上部結(jié)構(gòu)中的作用進(jìn)行了深入研究,但地上部和根系作為一個(gè)連續(xù)體的動(dòng)態(tài)相互作用受基因型變異控制的程度尚不清楚。在這里,我們利用野生二聚體導(dǎo)入系(IL20)對(duì)這些相互作用進(jìn)行了定位,該導(dǎo)入系具有明顯的干旱誘導(dǎo)的莖根比變化,其輪回親本Svevo是干旱敏感的。利用蒸滲重力測(cè)量平臺(tái),研究表明,在極端干旱條件下,IL20保持了較高的根系水分流入和氣體交換,從支持了根系生長(zhǎng)更大。有趣的是,在較低的VPD下,IL20在根系內(nèi)流和蒸騰作用方面的優(yōu)勢(shì)在日循環(huán)中更早得已體現(xiàn),因此支持較高的蒸騰效率。結(jié)構(gòu)方程模型的應(yīng)用表明,在水分脅迫下,VPD和輻射對(duì)蒸騰速率具有拮抗作用,而根系水分流入對(duì)葉片較高的大氣響應(yīng)具有反饋?zhàn)饔?傊@些結(jié)果表明,由干旱引起的根冠比變化可以在水分和大氣參數(shù)確定的較短時(shí)間窗口內(nèi)提高植物的吸水潛力。
Wild Wheat Introgression Promotes Temporal Water fluxes Dynamics under Terminal Drought Stress through Plant-Atmospheric Interrelations
Abstract and Figures
The intensity of water stress experienced by plants depends upon soil moisture status as well as atmospheric variables such as temperature, radiation, and air vapour pressure deficit (VPD). Although the role of shoot architecture with these edaphic and atmospheric factors is well-studied, the extent to shoot and root dynamic interactions as a continuum are controlled by genotypic variation is less known. Here, we targeted these interactions using a wild emmer introgression line (IL20) with a distinct drought-induced shift in the shoot-to-root ratio and its drought-sensitive recurrent parent Svevo. Using a gravimetric platform, we show that IL20 maintained higher root water influx and gas exchange under terminal drought, which supported a greater growth. Interestingly, the advantage of IL20 in root influx and transpiration was expressed earlier during the daily diurnal cycle under lower VPD and therefore supported higher transpiration efficiency. Application of structural equation model indicates that under water-stress, VPD and radiation are antagonistic to transpiration rate, whereas the root water influx operates as feedback for the higher atmospheric responsiveness of leaves. Collectively, these results suggest that a drought-induced shift in root-to-shoot ratio can improve plant water uptake potential in a short preferable time window determined by both water and atmospheric parameters.