“冷熱” 腫瘤如何劃分?根據(jù)腫瘤微環(huán)境中免疫細胞的空間分布情況,將腫瘤分為三種基本的免疫表型:免疫炎癥型、免疫排斥型和免疫沙漠型。其中免疫炎性腫瘤即為 “熱腫瘤”,免疫排斥瘤和免疫沙漠瘤皆可稱為 “冷腫瘤”。
簡單來講,“冷”腫瘤缺乏先天免疫,而在“熱” 腫瘤中,免疫細胞較為活躍,其內(nèi)環(huán)境也被大量的 T 細胞所浸潤。
圖 3. NK-DC 細胞互相干擾[15] 。
NK 細胞被靶腫瘤細胞或細胞因子激活后,會產(chǎn)生 IFN-γ 和腫瘤壞死因子 (TNF)-α,從而促進 DC 成熟。DC 的成熟也強烈依賴于 NK 細胞上激活受體(例如 NKp30 和 NKG2D)的參與。成熟的 DC (mDC) 反過來會產(chǎn)生白細胞介素 (IL)-12、IL-15 和 IL-18,增強 NK 細胞的細胞毒性和 IFN-γ 分泌。NK細胞還可以通過激活 NKp30 和抑制性殺傷細胞免疫球蛋白樣受體以及 NKG2A/CD94 來區(qū)分未成熟(iDC)和 mDC 并消除未成熟 DC(iDC),從而維持 mDC 群體的質(zhì)量(DC editing)。漿細胞樣 DC (pDC) 分泌的 IFN-α 可以進一步增強 NK 細胞的細胞毒性。NK 誘導(dǎo)的腫瘤細胞裂解提供抗原,該抗原可以被 DC 吸收用于抗原呈遞。一旦成熟,負載抗原的 mDC 將遷移到腫瘤引流淋巴結(jié),將腫瘤抗原交叉呈遞給初始 T 細胞,并誘導(dǎo)其分化為腫瘤特異性 CD8+ 細胞毒性 T 細胞和 CD4+ T 輔助 1 (Th1) 細胞。
以上的治療方法中溶瘤病毒療法以及腫瘤疫苗是被認為具有強大抗癌活性的新興療法。
:溶瘤病毒療法
溶瘤病毒療法不僅能夠選擇性的使腫瘤溶解外,而且通過溶瘤病毒裂解腫瘤細胞而誘導(dǎo)釋放的 TAA、PAMP、DAMP 等可以激活體內(nèi)的先天性和適應(yīng)性免疫反應(yīng),改變腫瘤的免疫微環(huán)境使冷腫瘤變?yōu)闊崮[瘤[23]。在實際的應(yīng)用中,T-VEC 就被證實是可以有效治療黑色素瘤的溶瘤病毒[24]。臨床上聯(lián)合應(yīng)用帕博利珠單抗能增加黑色素瘤患者的 CD8+ 細胞浸潤及活化[25]。
:腫瘤疫苗
但無論是哪種治療,最后都離不開腫瘤機制的探索,每一種機制的發(fā)現(xiàn)都會為我們的腫瘤治療帶來指導(dǎo)性的意義。
▐ MedChemExpressMCE 可提供 20,000+ 個用于腫瘤研究的相關(guān)產(chǎn)品及試劑,其中也包括腫瘤免疫微環(huán)境相關(guān)產(chǎn)品。
BIO8898 BIO8898 是一種有效的 CD40-CD154 抑制劑。BIO8898 抑制可溶性 CD40L 與 CD40-Ig 的結(jié)合, IC50 值為 25 µM。BIO8898 抑制 CD40L 誘導(dǎo)的細胞凋亡。 |
Mitazalimab Mitazalimab (ADC-1013; JNJ-64457107) 是 FcγR 依賴性 CD40 激動劑,具有腫瘤導(dǎo)向活性。Mitazalimab 激活抗原呈遞細胞,例如 樹突狀細胞 (DC),以啟動腫瘤反應(yīng)性 T 細胞。因此,Mitazalimab 誘導(dǎo)腫瘤特異性 T 細胞浸潤并殺死腫瘤。Mitazalimab 可重塑腫瘤浸潤性骨髓微環(huán)境。 |
TGFβ1-IN-1 TGFβ1-IN-1 (compound 42) 是一種有效的、具有口服活性的 TGF-β1 抑制劑。TGFβ1-IN-1 可以抑制 TGF-β1 誘導(dǎo)的纖維化標(biāo)志物(α-SMA 和纖連蛋白)的上調(diào),可用于肝纖維化疾病研究。 |
SRI-011381 hydrochloride SRI-011381 hydrochloride 是一種有具有口服生物活性的 TGF-β 信號通路的激活劑,具有神經(jīng)保護作用。 |
PD-1-IN-18 PD-1-IN-18 是 PD1 信號通路抑制劑,是一種免疫調(diào)節(jié)劑。 |
CL845 CL845 是 STING 激動劑 CL656 (HY-112878) 的類似物。CL845 可用于合成靶向 STING(干擾素基因刺激物)的可結(jié)合 PRR 配體。CL845 可用于癌癥、免疫系統(tǒng)疾病或感染的研究。 |
MCE的所有產(chǎn)品僅用作科學(xué)研究或藥證申報,我們不為任何個人用途提供產(chǎn)品和服務(wù)。
[1] Yuan-Tong Liu, et al. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021 Mar 11;11(11):5365-5386.
[2] Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–571.
[3] Mi Y, et al. The emerging role of myeloid-derived suppressor cells in the glioma immune suppressive microenvironment. Front Immunol. 2020;11:737.
[4] Bonaventura P, et al. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front Immunol. 2019 Feb 8;10:168.
[5] Wallich R, et al. Abrogation of metastatic properties of tumour cells by de novo expression of H-2K antigens following H-2 gene transfection. Nature. 1985;315(6017):301–305.
[6] Peng W, Chen JQ, Liu C, et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016;6(2):202-216.
[7] Zhu S, et al. Tumor microenvironment-related dendritic cell deficiency: a target to enhance tumor immunotherapy. Pharmacol Res. 2020 Sep;159:104980.
[8] Vacchelli E, et al.. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science (2015) 350:972–8.
[9] Mariathasan S, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544-548.
[10] Toso A, et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. (2014) 9:75–89.
[11] Randolph GJ, et al. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol. 2008;26:293-316.
[12] Hojo S, et al. High-level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res. 2007;67(10):4725-4731.
[13] Montoya M, et al. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood (2002) 99:3263–3271.
[14] Srivastava P, et al. Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells. Leuk Res. (2014) 38:1332.
[15] Zhang C, et al. Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Front Immunol. (2017) 8:533.
[16] Golden EB, et al. Radiotherapy and immunogenic cell death. Semin Radiat Oncol. 2015;25(1):11-17.
[17] Ribas A, et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy [published correction appears in Cell. 2018 Aug 9;174(4):1031-1032]. Cell. 2017;170(6):1109-1119.e10.
[18] Bevers RFM, et al. Role of urothelial cells in BCG immunotherapy for superficial bladder cancer. Br J Cancer (2004) 91:607–12.
[19] Khong A, et al. The use of agonistic anti-CD40 therapy in treatments for cancer. Int Rev Immunol. (2012) 31:246–66.
[20] Ott PA, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature (2017) 547:217–221.
[21] Shrimali RK, et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70(15):6171-6180.
[22] Klein C, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines.
Oncoimmunology (2017) 6:e1277306.
[23] Russell L, et al. Oncolytic Viruses: Priming Time for Cancer Immunotherapy. Biodrugs. 2019;33:485-501
[24] Andtbacka R, et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol. 2015;33:2780-8
[25] Ribas A, et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell. 2017;170:1109-19.e10
[26] van der Burg SH, et al. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16:219-33.
[27]Ott P, Hu-Lieskovan S, Chmielowski B, et al. A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer. Cell. 2020;183:347-62.e24